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ABSTRACT

Design and Deployment of Multistable Robotic Metamaterial

Maxwell Bryant Patwardhan

To deploy robots in the real world, they must be able to adapt to changing envi-

ronments that require different capabilities. Traditional rigid robots are typically

designed for a specific task, making them very effective for a small range of applica-

tions. Robotic systems with coupled, active units, or robotic metamaterials have the

potential to circumvent these issues by trading precision for adaptability. In this work,

we present a novel robotic metamaterial that leverages the multistable states of com-

pression springs in tandem with bistable mechanisms in order to exhibit exploitable

behavior. We demonstrate this system’s ability as a flexible robotic manipulator by

grasping a variety of objects using a facile open-loop controller.
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CHAPTER 1

Introduction

1.1. Motivation

‘One needs only to study a certain positioning of the hand in relation to the keys

to obtain with ease the most beautiful sounds, to know how to play long notes and

short notes and to achieve certain unlimited dexterity.’

-Frédéric Chopin

Well before the era of benchmarking and comparing robotic systems to their bi-

ological counterparts, Chopin understood the innate capability of the human hand.

Such abilities are challenging to downplay when compared to robotic simulacrums.

The human hand can grasp and move immense loads, as well as deftly manipulate

small and fragile objects. It is difficult to find a comparably robust system capable

of such strength, precision, and dexterity—if even possible at all.

Nevertheless, the field of classical robotics has historically worked to create unique

robots that serve unique tasks. Rather than compete in generality, humans have

designed specific machines that are highly capable of singular tasks. The particular

nature of these machines’ inherent purpose leaves them with a weakness: they quickly

become unreliable and potentially dangerous in highly dynamic environments [1]. A

common notion of a robot is one capable of a task chosen a-priori, such as navigating a

crowd [2], manipulating components in an assembly line [3], or autonomously driving
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on city streets [4]. However, slight environmental changes jeopardize the robot’s per-

formance. In recent years, robots that act in task-agnostic and environment-agnostic

manners have been proposed, producing machines that could one day perform multi-

ple unrelated primitives with relatively low cost, training, and investment in design

engineering. Robots that act as metamaterials, a concept which originates from the

field of material science [5] [6], are well suited for said environment-agnostic oper-

ation. Metamaterials are artificial structures that leverage an anisotropic material

property to exhibit unique behavior in various applications, from thermodynamics to

acoustics [7], [8].

In this thesis, I outline a robotic metamaterial system built of modular nodes,

allowing for high scalability and configurability with little alteration in manufac-

turing technique. As will be discussed in Chapter 2, many robotic metamaterials

require fine-tuned manufacturing and assembly, limiting scalability and experimen-

tation with multiple configurations. This system has the potential to function for a

variety of tasks, including manipulation, locomotion, and mechanical sensing, among

other areas. Classically, manipulators are designed to handle families of objects that

share a common characteristic. Some manipulators can easily pinch and lift large,

rigid objects, others work with fragile and soft items, and some handle high-loading

conditions [9]. We construe our robotic system as a manipulator capable of han-

dling a breadth of objects. However, it simultaneously serves as a platform for future

research in heuristic control, mechanical intelligence, and locomotion via collective

behavior.
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1.2. General Approach

Our metamaterial leverages the multistable states of compression springs with an

additional bistable compliant mechanism to grasp objects in its environment. The

robotic system is a sheet of individual housings (nodes) connected by compression

springs, as shown in Figure 1.1. Selected nodes contain batteries, a servomotor, a

Figure 1.1. Robotic metamaterial sheet

bistable compliant spring, and a microcontroller. These nodes are referred to as ”ac-

tive nodes,” and nodes without said electronics will be called ”passive nodes.” Select

compression springs between nodes have a small cable running through their center,

which can be tensioned by the servomotor in active nodes. Tensioning the compres-

sion springs causes them to enter a bifurcated state, pulling the nodes together. When

performed in unison, this causes the metamaterial to form various shapes, making it

useful for various tasks such as grasping, locomotion, and mechanical computing.
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1.3. Summary

The contributions of this thesis are the design, manufacturing process, and soft-

ware interface for a novel robotic metamaterial. Chapter 2 provides a background of

current related work on robotic metamaterial systems. Chapter 3 discusses the plat-

form’s design, assembly, and operation. Chapter 4 demonstrates the functionality

of a manipulation primitive. Lastly, Chapter 5 discusses future uses and considera-

tions for the platform and what conclusions can currently be drawn from this research

project. Further details regarding the design and in-depth instructions for assembling

and operating the system can be found in the GitHub1 repository.

1github.com/MaxPatwardhan/multistableRoboticMetamaterial
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CHAPTER 2

Related Work

Modern advancements in material science, mechanical engineering, and robotics

have given way to a burgeoning field: robotic metamaterials. These systems exhibit

unique behaviors by exploiting properties not found in naturally occurring materials,

allowing for novel capabilities in a diverse set of environments. The creation of new

materials with properties such as negative stiffness [10], auxetic response [11], and

programmable deformation [12], makes them highly suitable for a wide range of

applications in robotics. Robotic metamaterials have seen significant advancement

in recent years due to improvements in access to aforementioned novel materials,

advanced manufacturing techniques, and current simulation/control strategies. The

development of robotic metamaterials has brought about a new class of versatile,

robust robotic systems that are well suited to handle dynamic environments compared

to their prototypical counterparts.

A fascinating aspect of robotic metamaterials is their potential for mechanical

intelligence [13]. Mechanical intelligence involves the integration of sensing, comput-

ing, and actuating functions within the material structure itself, enabling adaptive

and responsive behaviors without the need for external control systems. By treat-

ing information processing as a material property, one can design systems that are

inherently capable of complex, autonomous operations. This concept gives way to
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robots interacting with and adapting to their environments in real time, enhancing

their robustness and efficiency.

Here, we further explore examples of existing systems’ design, strengths, and

weaknesses.

2.1. Metamaterial Advantages in Robot Tasks

Robotic metamaterials exhibit behaviors not found in classical robots, enabling

them to perform tasks that traditional robots would be incapable of. Traditional

robots often have rigid components that limit their ability to safely and effectively

interact with various environments. Robotic metamaterials offer a promising solution

to this shortcoming due to their ability to undergo significant transformations in

shape while maintaining structural integrity.

Some robotic metamaterials leverage the advantages of multistability to create

easily controllable and energy-efficient systems [14], [15]. H. Morgan et al. (2021)

present a pneumatic soft gripper that utilizes shape reconfiguration and actuation

without the need for complex closed-loop control systems. The gripper uses a hierar-

chy of multistable structures to encode and transition between multiple stable states

using an open-loop controller. The researchers effectively demonstrate the control of

a complex, nonlinear system by collapsing a continuum of states into a handful of

stable states. This paper focuses on conceptual design and simulation but displays

limited physical demonstration in diverse environments.
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In [16], Hu et al. (2020) propose a method of creating programmable, origami-

inspired robotic structures. The programming of these structures changes the me-

chanical properties of the origami structure, which changes the robot’s behavior when

it is actuated. Hu et al. provide a solid basis for transforming origami models into

programmable robotic systems and validated the proposal with practical applications

such as a peristaltic crawling robot. Similar [14], this paper is mainly theoretical and

lacks solutions to questions that arise regarding manufacturing and scalability.

Grossi et al. (2021) propose a bio-inspired robot, the Metarpillar, that uses meta-

material units to promote mechanical instabilities that drive motion in the form of

buckling [15]. The Metarpillar is constructed of elastomer chambers whose stiffness

is anisotropic. When deflated, the chambers buckle under negative pressure, enabling

controlled deformations that mimic the movement of a caterpillar. This actuation

method is efficient, safe, and environment-agnostic, demonstrating the innate advan-

tages of metamaterial use in robot tasks.

2.2. Mechanical Intelligence

Mechanical intelligence is exemplified in systems where the material structure’s

sensing and computational capabilities are innate. Mechanical computers do not need

external (often digital) control systems to exhibit valuable behaviors. For this rea-

son, metamaterials are a well-posed medium for mechanical computers. Yasuda et al.

(2021) explore the potential of mechanical computing systems that use flexible me-

chanical metamaterials. The authors demonstrate how mechanical bits, represented

by bistable beams and origami structures, can be networked to perform complex com-

putations. These systems can implement universal logic gates like AND, OR, and
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NOT, which are essential for computational tasks. Integrating mechanical computing

with robotic metamaterials enables the creation of robots that can process informa-

tion and make decisions autonomously in the absence of a digital processor, ultimately

enhancing their adaptability and functionality in dynamic environments [13].

Another notable application of mechanical intelligence is machine learning. As

mechanical systems become more capable of computing complex information, this

opens up the possibility of creating robots that can learn about their environment in

real time. Bhagat et al. (2019) review various deep reinforcement learning algorithms

applied to soft robotics, highlighting the potential for developing self-sufficient agents

capable of learning from their environments. They emphasize the ability of soft robots

to adapt and respond autonomously, using embodied intelligence to improve their

interaction with unpredictable environments. This integration of machine learning

with metamaterials comes with challenges, such as reliance on characterizing and

classifying metamaterial robots, which, by design, operate in countless degrees of

freedom. Bhagat et al. review promising results of using imitation learning algorithms

to produce deep reinforcement learning models on soft robotic systems [17].

2.3. Key Takeaways

The aforementioned work captures only a small snapshot of this ever-broadening

field. Yet even with the limited examples provided above, the advantages of robotic

metamaterials are clear. Robotic metamaterials are inherently versatile, adaptable,

and low-cost due to the design ideals they are predicated upon. However, these ideals

also bring shortcomings that must be solved to increase their capabilities. These

challenges include material limitations, poor control precision due to many systems’
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innate nonlinear nature, and scalability issues due to manufacturing complexity. De-

spite this, these robots provide a gateway to creating autonomous systems capable of

real-time learning and adaptation in a robust manner. As manufacturing methods,

material science, machine learning, and control theory all advance, these robots will

continue to gain capabilities in a plethora of applications.
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CHAPTER 3

Metamaterial Design

The overall metamaterial system is highly configurable. Our initial design is a

four-by-four rectangular grid, though this is far from the sole possible configuration.

The specific arrangement of driven nodes can be easily modified, thus altering the

metamaterial’s behavior. The nodes are modular, and the overall system can be easily

biased towards certain behaviors depending on the placement of driven nodes and the

routing of the cables; an example of this can be found in 3.4.

Figure 3.1a shows an assembled node, and adjacent is Figure 3.1b, which shows

an exploded view with labeled components.
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(a)

(b)

Figure 3.1. (a) CAD of an assembled active node. (b) Exploded view
of an active node with all components. 1) Adafruit Feather micro-
controller. 2) FeeTech Servo Motor. 3) The main body of the node
housing serves as the mounting point for all components. 4) Cable
pulley. 5) Compliant bistable mechanism. 6) Lithium polymer power
supply battery. 7) Removable lid for assembly and repair.
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Figure 3.2 shows two possible configurations of robot layout, as detailed CAD

perspectives of connected nodes.

(a) (b)

(c)

Figure 3.2. (a) Four-by-four configuration with eight active nodes and
eight passive nodes. (b) Three-by-three configuration with one active
node and eight passive nodes. (c) CAD representation of connected
nodes with one transparent housing.
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3.1. Mechanical Design

The metamaterial system’s mechanical design is designed to be modular, com-

pact, and simple to assemble or disassemble while maintaining the desired behaviors

in prototyping. The nodes can be easily 3D printed and assembled with glue and hex

keys. Necessary assembly hardware is listed in the bill of materials 3.4. The sub-

sections below more thoroughly detail the key mechanical components that comprise

the robot.

3.1.1. Modular Housing

The modular housing has a handful of functions in the system:

(1) The rigid component of metamaterial system.

(2) Acts as a compact mount for electronic and mechanical components.

(3) Creates a bias when inducing multistability in bifurcated springs.

(4) Acts as an anchor for incoming cables from other active nodes.

A fully assembled node fits within a 5cm cube. Each active node holds a battery,

a compliant bistable spring, a servo motor, an Adafruit Feather ESP32 V2 3.9, and

the pulley system 3.4 used to tension the cables between compression springs. The

housing can easily be 3D printed, but supports are required to allow the overhangs to

print correctly. All holes are sized to self-tap with either M2 or M3 metric machine

screws. The modular nature of the housing design allows for the metamaterial sheet

to be assembled and driven in various configurations, as shown in allowing one to bias

the metamaterial towards certain behaviors. The node housing has a removable wall,
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allowing assembly and repair. Figure 3.3 shows a physical housing beside its labeled

CAD counterpart. Note that the housing is symmetric, and the obscured interior

section of 3.3b is identical to the visible portion.

(a) (b)

Figure 3.3. (a) 3D Printed passive node. (b) CAD Housing with labeled
mounting points. 1) Mounts for Adafruit Feather microcontroller. 2)
Mounting hold for removable wall. 3) Mounting hole for compliant
bistable mechanism. 4) Anchor point for incoming cables. 5)Mounting
point for Servo. 6) Cable port for incoming and outgoing wire. The
cable port also fixes the location of the compression spring.

3.1.2. Tensioning System

The compression of the bistable compliant mechanism, as well as the compression of

the springs, is performed by a small hobbyist servo in tandem with a custom-designed

pulley. Fishing wire is used due to its low bend radius, high yield strength, and ease

of assembly. The fishing wire is glued to the pulley for the compression springs and

threaded between the housings. The fishing line is anchored at the terminal node
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with an M3 screw that is threaded directly into the housing. Figure 3.4 depicts how

cables are routed and anchored between active and passive nodes. Depending on both

Figure 3.4. Example of tensioning between an active node and two
passive nodes. Each color represents a different cable, and the dashed
portion is where the two cables overlap. Each cable terminates at an
M3 screw in the adjacent passive node.

the overall construction of the sheet and the configuration of the active nodes, there

are a variety of ways in which the cables between active and passive nodes could

be tensioned. Altering the direction of the cables can drastically change the robot’s

behavior and can be used to implement other primitives. One could reasonably think

to ”bias” the robot by introducing an asymmetry into which nodes are active and

which nodes are passive or by only tensioning the compression springs in a certain



26

direction, ultimately introducing new behaviors and primitives. Figure 3.5 shows a

small group of possible tensioning strategies.

(a) (b) (c)

(d) (e)

Figure 3.5. Blue nodes represent active nodes, black nodes are passive.
Similarly, red connections are driven, and black connections are not.
(a) Four-by-four configuration with eight active nodes and eight passive
nodes. This configuration is used on the experimental platform. (b)
An alternate symmetric configuration (c) A biased configuration. (d)
A second biased configuration with potential for locomotion. (e) An
example of a possible non-rectangular configuration.

3.1.3. Bistable Compliant Spring

Each active node has a compliant bistable spring mechanism driven by the servo.

Like the system’s compression springs, the compliant mechanism is routed by a cable
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connected to the servo’s pulley. The cable is anchored to the removable wall, as shown

in Figure 3.6.

(a) (b)

Figure 3.6. (a) A profile section view of how the bistable mechanism is
actuated. (b) An alternate view of how cables are routed through the
bistable mechanism.

The design for this mechanism was referenced from Brian Jensen et al. [18]. Fig-

ure 3.7 shows the mechanism in its two states. This mechanism must be printed from

a compliant material that does not fatigue easily. Polypropylene (PP) and Thermal

Polyurethane (TPU) were both tested during prototyping, and TPU was ultimately

selected, and TPU was chosen for its superior fatigue resistance and manufactura-

bility, ensuring that the mechanism can endure repeated cycling without significant

wear.

A bistable mechanism of this form is desirable as it only consumes energy when

transitioning between states. In the context of manipulation, these mechanisms pro-

vide compliant yet forceful points of contact that provide friction and help keep the

object stationary. This component of the metamaterial system is also viable as a
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(a) (b)

Figure 3.7. (a) The bistable mechanism in its lowest energy state. (b)
The bistable mechanism in higher energy state. It is driven to this state
by the servo when an active node tensioning its cables.

dynamic actuator for tasks requiring quick and repeatable transitions between stable

states. Additionally, the bistable mechanism’s ability to maintain its state without

continuous power makes it highly efficient for applications where energy conservation

is critical.

The integration of bistable compliant springs into the metamaterial system en-

hances its versatility, enabling it to adapt to various operational requirements while

maintaining high efficiency and reliability. This approach leverages the inherent prop-

erties of bistable mechanisms to create a robust and adaptive robotic system capable

of performing complex tasks with minimal energy expenditure. Section
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3.2. Electrical Design

The electrical systems design of the metamaterial is comprised of entirely off-the-

shelf components, making it easy to assemble and repair. In an individual active node,

the electronic system contains an Adafruit Feather ESP32 V2 (microcontroller), a 3.7

volt nominal Lithium Polymer (LiPo) battery, and a FeeTech FS90R continuous ro-

tation servo motor. This system can receive remote commands from a base computer

and send commands or information about its state if requested. Figure 3.8 shows a

functional block diagram displaying a high-level view of the electronic system.

Figure 3.8. Electrical functional block diagram displaying power (red),
data (blue), and dual (violet) connections. 1) The base computer pro-
grams and powers the microcontroller over USB-C. This is also used
to charge the LiPo battery. MQTT is used to communicate with the
base computer over WiFi during typical robot operation. 2) The LiPo
battery serves as a power supply for the actuator and microcontroller
during wireless operation. The microcontroller recharges the LiPo bat-
tery when connected to USB-C. 3) The microcontroller sends a pulse
width modulation (PWM) control signal to the servo. The pulse width
value, τ , which is some fraction of the total period, λ, is used to set the
speed and direction of rotation. 4) The servo is powered by a 3.3-volt
DC linear regulator onboard the microcontroller. 5) Torque, Γ, com-
manded by the PWM control signal.
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3.2.1. Feather ESP32 Microcontroller

The Adafruit Feather ESP32 V2 is an ideal microcontroller board for this robot due

to its size, low cost, high configurability, and inclusion of an antenna. The Feather

serves these main functions:

(1) Controls of the servo actuator.

(2) Communicates with the central controller via MQTT.

(3) Distributes and regulates power to onboard peripheral devices.

(4) Displays state using the NeoPixel LED.

The microcontroller is programmed using C through the Arduino IDE. This is possible

as the board has a built-in programmer, eliminating the need for an external USB-

to-UART module. The main processor on the board is an ESP32-WROOM Pico

Mini D2, a small and powerful microcontroller with an onboard antenna, making it

ideal for use in our WiFi-based communication protocol. The Feather board has a

3.3-volt DC linear power regulator, which is used to power the node’s actuators. This

regulator also has the capacity to power other low-current peripheral devices (such

as a sensor) that the user would like. Notably, the Feather contains all the necessary

circuitry to charge the LiPo battery and ”hot-swap” the battery as the main power

source when the USB-C cable is connected and supplying power. Figure 3.9 shows

each of the aforementioned functions.
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Figure 3.9. Adafruit Feather ESP32-WROOM V2 1) Two-pin LiPo
battery connector. 2) LiPo battery management circuitry. 3) Example
pin for generating PWM control signal. 4) 3.3-volt DC power supply
for the servo. 5) USB to UART programming microcontroller. 6)
NeoPixel RBG Indicator used to display state. 7) Espressif ESP32
Pico Mini D2. 8) WiFi antenna.

The Feather board sits on top of the metamaterial, allowing the NeoPixel RGB

LED to declare the state of a given driven node. Thus, the operator can see whether

a given node is tensioning in a given direction, unwinding, or at rest.

3.2.2. Servo Actuator

The servo used in this system is the FeeTech FS90R continuous rotation servo, a

common hobbyist servo that is lightweight, small, and powerful. As previously men-

tioned, the servo’s speed and direction are determined by a PWM signal generated
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by the ESP32. Depending on the PWM signal’s duty cycle, D, the servo will rotate

either counterclockwise or clockwise over a continuous distribution of speeds.

It is worth noting that the values we use for D do not match the recommended

values on the FS90R datasheet. Nevertheless, a uniform distribution of input D was

tested and measured on an oscilloscope to find values that give the fastest clockwise

and counter-clockwise rotation speeds. Table 3.1 shows the spectrum of measured

pulse width values, τ , the corresponding duty cycle values, D, and the measured

rotational velocity, ω, with the selected values in bold.
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Input (integer) τ (µs) D (%) Output, ω (RPM)

0 0 0 0.0

10 40 4 -35.5

25 100 10 -84.5

35 140 14 -95.0

50 200 20 -84.4

75 296 29.6 -41.4

100 392 39.2 -9.8

125 492 49.2 -1.5

150 588 58.8 -1.5

175 688 68.8 -0.5

200 784 78.4 -0.5

225 880 88 0.0

250 980 98 95.0

255 1000 100 90.0

275 72 7.2 -62.5

Table 3.1. Input 8-bit integer versus measured output velocity, ω. Note
that a negative value of ω implies a counterclockwise rotation. For typ-
ical operation, values of D = 14% and D=98% are used for clockwise
and counter-clockwise rotation, respectively, as they produce the high-
est torque.

3.3. Software and Communication

The system’s software is separated into the central controller, the MQTT broker,

and the embedded programming on a given active node. The central controller and
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microcontrollers use the Message Queuing Telemetry Transport (MQTT) communica-

tion protocol to send and receive information. The central controller and the MQTT

broker run on the user’s laptop. The controller runs in a Python environment, and

the broker simultaneously runs in the Windows terminal. Overall, this architecture is

highly configurable and scalable, enabling the robot to operate in a broader spectrum

of environments without needing a tethered connection to the controller and power

source.

3.3.1. Wireless Communication via MQTT

MQTT is a lightweight, publish-subscribe, broker-based network protocol ideal for

communication between the base controller and separate microcontrollers. MQTT

is highly configurable and reliant on a local WiFi network to transmit data. Our

system uses Mosquitto, an open-source broker that runs on a local environment Win-

dows. The broker’s job is to gather and relay messages to any clients on the network.

In contrast with other cloud-based alternatives, the Mosquitto broker is lightweight

and can also be run on the ESP32 microcontroller boards themselves, allowing one

to implement a control scheme and communication protocol that lives only on the

embedded systems themselves. Our system utilizes a central Python controller to

command each node and monitor the state of the robotic system. Figure 3.10 shows

the physical architecture adopted for this project. A local router hosts a WiFi net-

work to which the laptop and nodes connect. The central controller communicates

with the Mosquitto broker internally and can then publish a message on an arbitrary

topic. Each Adafruit Feather microcontroller connects to the local WiFi network and
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establishes a connection to the MQTT broker using the broker’s Network IP address

and port 1883 (unless otherwise specified by the user).

Figure 3.10. Physical layout of MQTT network. The router creates
a local WiFi network, and the broker distributes messages between
the clients in the system. An MQTT network can handle hundreds of
devices at a time, which is more than sufficient for our purposes.

In an MQTT network, clients publish messages, also called payloads, on desig-

nated topics. These messages are sent to the broker, which allocates the message to

all other clients subscribed to that topic. For instance, a node might publish data to

a topic named nodes/’address’/state. In this scenario, it is essential to note that

’address’ would be specific to a particular node or set of nodes. However, a device

could also publish to a different topic that every node subscribes to in the system, e.g.,

nodes/all/state. The Python client on the laptop and other nodes can subscribe

to this topic to receive updates whenever new data is published. This functionality

is particularly useful for real-time monitoring and control with high granularity. The

topics address clients and their objects on the network, and the messages change the

state of information relevant to the addressed object.

1 import paho.mqtt.client as mqtt #mqtt library
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2

3 client = mqtt.Client(protocol=mqtt.MQTTv5) #create client obj.

4 client.connect("192.168.1.7", 1883) #connect to broker IP

5

6 topic = "nodes/3/servo/set" #address node w/ topic

7 message = '{"drive": "clockwise"}' #specify message

8

9 client.publish(topic, message) #publish message to broker

10 client.disconnect() 3Disconnect from the broker

Listing 3.1. Example Python script that commands an individual node

to drive the servo.

Currently, the robot is controlled by inputs from a human user. The central

controller receives an address and a payload as input and publishes the message to

the corresponding address. The following steps further detail the process by which

a message is published by a Python controller and received by a WiFi client via the

Mosquitto broker:

Step 1: Python Controller Publishes a Message. The Python controller, acting

as an MQTT client, establishes a connection with the Mosquitto broker using

the broker’s IP address. Once connected, the controller publishes a message

to a specific topic.

Step 2: Broker Receives the PUBLISH Message. The Mosquitto broker re-

ceives the published message. It parses the message to extract the topic and

payload and identifies which clients are subscribed to the topic.
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Step 3: Broker Forwards the Message to Subscribed Clients. The broker

forwards the message to all clients subscribed to the topic. This involves

sending a PUBLISH message from the broker to each subscribed client.

Step 4: Node Client Receives the Message. Each subscribed Node client receives

the forwarded message. The client parses the message to extract the topic

and payload and then processes the message accordingly.

The controller for the manipulation task is quite facile. The controller will intake

one of three values from the user:

User Input: Node Action

0 Halt all movement

1 Drive in clockwise direction

2 Drive in counterclockwise direction

Table 3.2. Example inputs for a facile open-loop control scheme, which
switches between a relaxed state and a contracted state.

3.3.2. Embedded Programming

The embedded programming of this system is currently quite simple and highly con-

figurable. As stated in Subsection 3.2.1, the ESP32 is programmed in C using the

Arduino IDE. The Feather board contains a microcontroller that automatically han-

dles resetting and programming the ESP32 over UART.

The Feather declares variables, pins, and necessary objects when initially powered

on. The ESP then waits for a WiFi connection and a subsequent connection to the
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broker. When the system is running, the Feather runs a main loop. Algorithm 1

details all steps taken during startup and the main loop that follows.
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Algorithm 1 High-Level Servo and LED Control with WiFi and MQTT Communi-
cation

1: Initialization:
2: Set up constants for hardware pins and communication credentials
3: Initialize hardware and communication interfaces
4: function setup
5: Connect to WiFi
6: Connect to MQTT broker
7: end function
8: function rotateServo(direction, duration)
9: Rotate servo in specified direction for given duration
10: end function
11: function publishState(state)
12: if MQTT client connected then
13: Publish state message
14: else
15: Reconnect and publish state message
16: end if
17: end function
18: function updateNeoPixel(color)
19: Update NeoPixel colors based on color input
20: end function
21: while true do
22: Check Serial Input:
23: if serial input available then
24: Read and process serial input
25: if input matches ”0” then
26: Stop servo, call publishState(stopped), and

updateNeoPixel(Red)
27: else if input matches ”1” then
28: Rotate servo clockwise, call publishState(clockwise), and

updateNeoPixel(Green)
29: else if input matches ”2” then
30: Rotate servo counterclockwise, call publishState(counterclockwise),

and updateNeoPixel(Blue)
31: end if
32: end if
33: Maintain MQTT Connection:
34: if MQTT client not connected then
35: Reconnect to MQTT broker
36: end if
37: Call MQTT client loop to maintain connection
38: end while
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3.4. Bill of Materials & Unit Cost

Part: Vendor: Part No.: Unit Cost
($):

Quantity: Total Cost
($):

Feather
ESP32 V2

Adafruit 5400 19.95 1 19.95

350mAh
3.7V LiPo
Battery

Adafruit 4237 5.95 1 5.95

FS90R Servo
Motor

Adafruit 154 11.95 1 11.95

M3 ×
6.00mm
Screw

McMaster
Carr

92095A179 0.0583 8 0.47

M2 ×
6.00mm
Screw

McMaster
Carr

92095A454 0.2732 10 2.73

Compression
Spring, 1” ×
0.3 OD

McMaster
Carr

9657K301 0.965 4 3.86

10 Lb. Fish-
ing Line

Amazon Find a cheap
one.

0.02 ($/ft) 4 ft 0.08

Matte
PLA+

Overture Matte Black 0.019 ($/g) 16.83 g 0.32

Fast TPU Overture Clear 0.032 ($/g) 1.75 g 0.06

Total: 45.37

Table 3.3. Bill of Materials (BOM) for Project

The overall cost of one active node is $45.37.
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CHAPTER 4

Task Primitives

We demonstrate the capability of our robotic metamaterial system to perform

various tasks such as manipulation, locomotion, and stable shape formation. The

system’s unique design, leveraging multistable states and compliant mechanisms, al-

lows it to adapt its shape to grasp and manipulate objects of different geometries, as

well as locomote in a given direction when mechanically biased.

The first set of experiments involved the robotic metamaterial gripping a cone

and a rectangular prism. The active nodes were programmed to adjust the tension in

the connecting cables, enabling the system to conform to the shapes of the objects.

Figure 4.1 shows the robot successfully gripping a cone, while Figure 4.2 depicts the

robot gripping a rectangular prism. The adaptability of the metamaterial structure

is evident in these tasks, showcasing its potential for handling objects with varied

geometries without the need for reconfiguration.

The experimental results indicate that the robotic metamaterial can effectively

adapt to and manipulate objects of different shapes. This adaptability is crucial

for applications where the robot must handle diverse items without needing specific

end-effectors for each geometry.

Another key capability of the robotic metamaterial is its ability to morph into

various shapes. This is particularly useful for tasks requiring surface conformity or
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Figure 4.1. Robot system gripping a cone

specific geometric configurations. When actuated in two select trials, the system

formed a dome shape and folded surface, demonstrating its potential application in

programmable structures or adaptive surfaces [19]. Figure 4.3a illustrates the robot

taking on a dome shape as well as a folded surface, highlighting the adaptability and

reconfigurability of the system.
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Figure 4.2. Robotic metamaterial gripping a rectangular prism. Note
that the visible bistable mechanism helps grip the side of the prism.

Though limited in number of trials, these experiments underline the robotic meta-

material’s adaptability and robustness in performing complex manipulation tasks and

morphing into various shapes, making it suitable for a wide range of applications.
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(a) (b)

Figure 4.3. (a) Robot metamaterial taking on a dome shape in the
absence of an object to grasp. (b) Metamaterial mimics a folded surface.
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CHAPTER 5

Conclusions and Other Potential Applications

This thesis has presented the design, development, and testing of a novel robotic

metamaterial system capable of performing a manipulation task through the exploita-

tion of compressed springs. The integration of multistable states and compliant mech-

anisms has enabled the system to handle objects of varying shapes and sizes and to

morph into different geometric configurations as required by the task. The robot has

also shown an ability to morph into two distinct shapes even in the absence of an

object to grasp – further demonstrating the inherent advantages of robotic metama-

terials.

A primary strength of this system is its high adaptability in contrast to its rela-

tively facile control scheme. The modular design allows for easy scalability and re-

configuration, making it possible to tailor the system for specific applications without

extensive redesign, manufacturing processes, or programming. The use of off-the-

shelf components and 3D printing techniques further enhances its accessibility and

ease of assembly. The system’s ability to undergo significant shape transformations

while maintaining structural integrity makes it particularly suitable for applications

requiring versatile manipulation capabilities. This adaptability also extends to its po-

tential use in dynamic environments, where traditional rigid robots may struggle to

perform effectively. Despite its strengths, the system has certain limitations that need
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to be addressed in future work. As mentioned in Chapter 2, this system lacks pre-

cision in favor of environmental adaptability. Additionally, while the current system

demonstrates the feasibility of the approach, the current system struggles to grasp

objects with higher mass. The system also suffers from inconsistency. Due to the

relatively trivial control scheme, the simultaneous activation of every node does not

always produce the same effect. The manipulator can fail to grasp objects or form a

stable structure, and instead, active nodes will twist in-plane, not being significantly

affected by the bistable mechanism. This is undoubtedly an interesting behavior but

is not particularly useful in the context of manipulation. This system might be well

suited for 2D and 3D locomotion. This would require more complex control schemes

coupled with further research into biasing the placement of active nodes. Another

potential avenue for this system is one of mechanical sensing. By receiving feed-

back from nodes, the system could potentially stand to learn the environment it is

interacting with.

In conclusion, the robotic metamaterial system developed in this thesis provides

evidence that robotic metamaterials can be useful in a variety of contexts. Its ability

to perform manipulation tasks with high adaptability and trivial open-loop control

makes it a promising candidate as a manipulator and leaves the possibility for other

complex tasks.
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